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based on a general four-step scheme that has a resemblance to the backward differentia-
tion formulas. We also present an extension to the composite strategy of the Bathe method.
Appropriate values for the algorithmic parameters are determined based on considerations
of stability and dissipativity, and less dissipative members of each algorithm have been
identified. We demonstrate the convergence characteristics of the proposed algorithms
with a nonlinear dynamic problem having analytic solutions, and test these algorithms
with several three-dimensional nonlinear elastodynamic problems involving large defor-
mations and rotations, employing St. Venant-Kirchhoff and compressible Neo-Hookean
hyperelastic material models. These tests show that stable computations are obtained with
the proposed algorithms in nonlinear situations where the trapezoidal rule encounters a
well-known instability.
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1. Introduction

The failure of popular algorithms in nonlinear dynamic analysis, e.g. the loss of unconditional stability of the trapezoidal
rule in the nonlinear regime [32,40,26,1], has motivated much of recent work in the development of more robust time inte-
gration algorithms for nonlinear elastodynamics. As pointed out in [25], numerical stability is of primary importance when
developing such schemes. In this regard, energy-conserving algorithms (e.g. [22,36,26,23,17,8,34,29,33]) that target nonlin-
ear problems have been proposed by a number of researchers. Among them the energy-momentum type methods pioneered
by Simo and Tarnow [36], with improvements and extensions by many subsequent efforts (see e.g. [37,26,25,17,28], among
others), have been especially successful. However, energy-conserving schemes have shown difficulties for numerically stiff
problems due to their lack of dissipation in the high-frequency range. Failures of energy-conserving algorithms have been
reported in [31,6,26,27,2], among others. It has been realized that the numerical instabilities associated with the existence
of repeated unit root at infinite frequency in common conserving schemes result in highly oscillatory responses, which hin-
der the convergence process for the solution of nonlinear equations [2]. Reducing the time step size may not necessarily help
the convergence process as a smaller time step may allow the excitation of even higher frequencies [5]. As a result, the need
for numerical dissipation in the high-frequency range, even though the underlying system may exhibit full energy conser-
vation, has been commonly recognized for robust time integration algorithms in the nonlinear regime.

Classical dissipative schemes [30,38,20,39,9] have been developed in the context of linear elastodynamics, see [21] for a
more comprehensive description. Although they have also been applied to nonlinear problems, it is observed that these algo-
rithms fail to provide reliable high-frequency dissipation in the nonlinear regime [25,2]. Indeed, the value of the algorithmic
parameter at which the scheme is dissipative may become problem dependent, see [19] for such an example in the nonlinear
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regime with the HHT-o scheme [20]. Much of recent research work [26,25,7,2,5,19] aiming to provide reliable numerical dis-
sipation in the nonlinear regime has been motivated by the ineffectiveness of classical dissipative schemes for nonlinear
problems. Most of the recently proposed algorithms are constructed based on some energy-conserving scheme, or other ap-
proaches such as the time discontinuous Galerkin method.

Another interesting approach has recently been proposed by Bathe and collaborators [3,4]. The main idea is to combine
the trapezoidal rule and the second-order backward Euler method into a composite algorithm. High-frequency numerical
dissipation is introduced through the backward Euler component. The algorithm has been demonstrated to be effective
for nonlinear elastodynamic problems involving large deformations, where the trapezoidal rule fails to produce a stable solu-
tion. The simplicity of this approach is particularly noteworthy, together with the symmetry of the resultant tangential stiff-
ness matrix, which is to be contrasted with the non-symmetry of the tangent matrices resulting from, for example, the
energy-momentum based methods.

In this paper we propose a general four-step scheme that bears a resemblance to the backward differentiation formulas
(BDF) [16], and present two time integration algorithms based on this scheme. We also consider a composite algorithm
incorporating such a BDF-like scheme and the trapezoidal rule using a composite strategy similar to the Bathe method
[3], and also present an extension of the Bathe composite strategy. These algorithms each involve two algorithmic param-
eters. The domains of the appropriate parameter values are determined based on a linear stability analysis and the consid-
eration of dissipativity. Although a nonlinear stability analysis of these algorithms for general nonlinear elastodynamic
problems is still elusive, numerical experiments suggest that these algorithms are very effective for nonlinear dynamic prob-
lems at time step sizes where the trapezoidal rule encounters a well-known instability. We test these algorithms for several
three-dimensional (3D) nonlinear elastodynamic problems involving large deformations with St. Venant-Kirchhoff and com-
pressible Neo-Hookean material models. The convergence characteristics of these algorithms are demonstrated using a non-
linear problem having analytic solutions.

The rest of this paper is organized as follows. In Section 2 we briefly discuss the high-order spatial discretization scheme
of the nonlinear elastodynamic equation with the spectral element method, which has been documented in detail elsewhere
[15]. The proposed temporal algorithms will be implemented and tested in conjunction with this approach for spatial dis-
cretization. In Section 3 we present a general four-step BDF-like scheme with second-order accuracy, and several algorithms
based on this scheme. In Section 4 we demonstrate the temporal convergence characteristics of these algorithms with a non-
linear problem having analytic solutions. In Section 5 we test the proposed algorithms with several nonlinear elastodynamic
problems involving large deformations for St. Venant-Kirchhoff and Neo-Hookean hyperelastic materials, and compare them
with the trapezoidal rule, the Bathe method, and the Park method [32]. Finally, Section 6 provides some concluding remarks.

2. Problem formulation

Consider the finite deformation of a 3D object occupying domain Q with boundary 9Q = 9Qp U 9Qy, where Dirichlet
boundary conditions (BC) are provided on 92, and Neumann-type (traction) BCs on 9Qy. Assume that the object is in its
natural configuration (no deformation), Q,, at time t = 0, and deforms to a new configuration, Q(t), at time t. With respect
to the initial configuration Q,, the weak form of the momentum equation can be expressed as follows,

1(/ov\" N ou
/Qos.j <<ﬁ> “F(u) + F'(u) -ﬁ)dﬂo - AQONT-vdl"f [ pof - vde, +/QO Py Vi =0 W eV, (1)
where X is the coordinate in Qo,u(X,t) is the displacement, and V, = {w(X) € [H' (Q0)]*|w(X) = 0 on 8Qqp}. In the above
equation, S, F(u), f and p, are, respectively the second Piola-Kirchhoff stress tensor, deformation gradient tensor, external
body force, and the structural mass density in the initial configuration. The external traction force T is assumed to be defor-
mation-independent, i.e. non-follower load. The superscript in (-)" denotes transposition.
We consider two hyperelastic material models in this paper. The first model is the St. Venant-Kirchhoff constitutive law,
which is characterized by the following strain energy density function

Y= %(trE)z + UE : E, (2)

where E is the Green-Lagrange strain tensor; 4 and pu are material constants, related to the Young’s modulus E and Poisson
ratio v by
VE E
= ) 3
Arva-2n * 2a+v 3)
We will also consider a compressible Neo-Hookean material, characterized by the following strain energy density
function

A=

¥y =%(lc -3) fulog]%(logl)zv ?

where C is the right Cauchy-Green deformation tensor, J is the Jacobian (J* = detC),Ic = trC, and p and / are material
constants.
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In the numerical examples presented in Section 5 we will extensively investigate the characteristics of the total energy,
defined by

1 (ou\?
H:/— (7)d9+ wdQ 5
o 2,00 ot o o 0 (5)
and the angular momentum, defined by
ou
J=] pX+u) Xﬁd%' (6)
Q

We employ a high-order spectral element approach (see [15] for details) to discretize Eq. (1) spatially. The essential com-
ponent of this approach is a set of high-order shape functions based on Jacobi polynomials for unstructured elements, which
provides a unified treatment for all commonly encountered element types in 3D space (hexahedron, tetrahedron, prism, pyr-
amid). These shape functions were originated from computational fluid dynamics [35,24], and have been employed to solve
Navier-Stokes equations and turbulence problems [12,13,11,10,14]. New schemes for temporal discretization will be pro-
posed and discussed below in Section 3. The spatial and temporal discretization processes result in a set of nonlinear alge-
braic equations, which will be solved with a Newton-Raphson iterative procedure [15].

3. Time integration algorithms

After spatial discretization of Eq. (1), we obtain a semi-discretized equation,
MU +N(U,t) - R(t) = 0, 7)

where overdot denotes the time derivative; M and U are, respectively the mass matrix and the vector of expansion coeffi-
cients of the displacement; N represents the contribution of the internal stresses, and is nonlinear with respect to the dis-
placement; R represents the contribution of the external loads. Note that R does not depend on U under the assumption of
non-follower loads we made in Section 2. This equation is supplemented with appropriate initial conditions. We will enforce
Eq. (7) at time step (n + 1), i.e.

MUnH + Nn+1 _ Rn+1 _ 07 (8)

where n is the time step index.

In this section we propose a general four-step BDF-like scheme, and several temporal algorithms based on this scheme for
solving Eq. (7). Each algorithm involves two parameters, and we determine the appropriate values of these parameters based
on a linear stability analysis. So the term stability used in this section is confined to the linear sense.

3.1. A BDF-like scheme of second-order accuracy

We propose the following general four-step linear multistep scheme, in the spirit of backward differentiation formulas,
for solving the semi-discretized equation,

oyt + oy + G — 6oy — 3052)}/"_1 + 8oy + 30, — 6)y" 2 + (g — 30y — fxz)y”‘3 =y" 1AL, 9)
where y is a generic variable.

The algorithmic parameters «; and o, are real numbers («; # 0). The time step size At is assumed to be constant. One can
demonstrate that this scheme has a temporal second-order accuracy for all (o4, o) values by employing the order condition
for linear multistep schemes [18]. Requiring the scheme to be stable as At — 0 (i.e. zero-stability) leads to the following con-
ditions on the parameters

o < =200 +2
2 - 1+ 25 (10)
Oy > —50 +3.
3.1.1. Restriction to a three-step scheme
We first restrict this scheme to a three-step type (with o =3 — 30y),
oyt (53 )y o -y (G- 2 =i ()

and accordingly with the zero-stability condition oy > 1. It is straightforward to check that «; = 3/2 corresponds to the sec-
ond-order BDF (BDF2) and «; = 11/6 corresponds to the third-order BDF (BDF3). To facilitate subsequent discussions we re-
parametrize the above scheme with the transform oy =1 — ¢ and Eq. (11) becomes

A(0)y™ +B(0)y" + C(0)y" " + D(0)y" > =y At, (12)
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where
AO) =4 -4,
B(0) =0 — 3,
13
Co)=3%-0, (13)
D(0) = —5+%

The zero-stability condition for the re-parametrized scheme is given by 6 < 3.
In the first algorithm we employ the scheme represented by Eq. (12), but discretize the velocity and acceleration in a dif-
ferent yet complementary fashion as follows:

Un+1 :A(AH;)UHH +B(AH;)UH +C(AH;)U71—1 +D(Aetl)Un—2 (14)
- A(07) - B(6,) C(02) yin1  D(02) o1

n+1 _ n+1 n n-1 n-2
U = At U+ At U" + At U+ At U (15)

where the algorithmic parameters 0; and 0, in general may take different values, with 01,0, < % according to the zero-sta-
bility condition. We will refer to this method as the GBDF-A algorithm in subsequent discussions.

We aim to seek (01, 0,) values such that the algorithm represented by Eqs. (14) and (15) is linearly unconditionally stable
and with relatively low dissipativity. For this purpose we first consider the scalar free-oscillation equation with no damping:

ii+wu=0 (16)

with initial conditions u(0) = 1 and 11(0) = 0, where u is the scalar variable to be solved and w > 0 is the angular frequency of
oscillation. We discretize Eq. (16) employing the scheme represented by Eqs. (14) and (15), and obtain the iterative relation:

[un+1 u® un—] ilnH u" un—l]T _ G[un un—l un—z u" un—l un—Z]T7 (17)

where G is the amplification matrix and its specific form is provided in Appendix A.

The eigenvalues A;(i = 1,...,6), and the spectral radius pg, of the amplification matrix are functions of 6, and 0,, and de-
pend on w and At only through the term wAt. In Fig. 1(a) we plot contours in the 0;-0, plane of the maximum spectral ra-
dius, P, (01, 02) = MaXocwar<woPg (01, 02, wAL). In the shaded region of this plot, the maximum spectral radius has a unit value
for any time step size 0 < §f < oo, where T is the period of oscillation, T = 27/w. This region is bounded by the lines 0; = 5/2
and 0, = 5/2 on the right and top sides, and by the line 0; + 0, = 1(-0.2 < 6; <1.2,-0.2 < 0, < 1.2), in the middle portion
of the left-bottom side.

We next investigate the distribution of all the eigenvalues of the amplification matrix in the complex plane for (6,, 6,)
values residing in this shaded region. Fig. 1(b) shows the distribution of the six eigenvalues in the complex plane correspond-
ing to (6, 6;) = (1,0), as wAt increases from zero to oo (The largest wAt value computed in the figure is 20007). The arrows
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Fig. 1. GBDF-A algorithm (damping-free equation): (a) contours of maximum spectral radius (for 0 < 4 < co) in 6;-0, plane; (b) distribution of eigenvalues
of the amplification matrix in the complex plane for 0 < wAt < oo with (6, 0;) = (1,0). The arrows near the curves indicate how the eigenvalues evolve as
At increases. The test problem is the free vibration of a spring (no damping). T is the period of vibration, T = ZZ,
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Fig. 2. Dissipativity of GBDF-A algorithm: (a) history of the total energy for linear vibration equation computed with (6, 6,) = (1/2,1/2) and different time
step sizes and (b) contours of fraction of energy loss per period, at a fixed 4 = 0.05, in 6; — 6, plane.

near each curve indicate how the eigenvalues evolve with increasing wAt. The dashed line marks the unit circle in the plane.
On can observe that all eigenvalues approach zero at large wAt values. A pair of complex eigenvalues (4, and /s in Fig. 1(b),
conjugate to each other) originate from the point (1,0), which corresponds to wAt = 0. They have the largest norm among the
six eigenvalues as wAt is small. Another conjugate pair of complex eigenvalues (/, and Z4) originate from inside the unit cir-
cle. The two remaining eigenvalues are real, and /¢ is identically zero. The key observation here is that for any wAt > 0 all
eigenvalues have a norm not larger than the unit value, and that there is no repeated eigenvalue (i.e. multiplicity more than
one) with a unit norm. For other 01, 0, values in the shaded region, the shapes of the eigenvalue curves in the complex plane
differ from those of Fig. 1(b) to a certain degree. For example, three pairs of complex eigenvalues result from some 01, 0, val-
ues. However, the observation that no eigenvalue is repeated with a unit norm for wAt > 0 is always true. This indicates that
the GBDF-A algorithm with parameters 0y, 0, located in the shaded region of Fig. 1(a) is linearly unconditionally stable.
We next investigate the effect of (0;, 0,) values on the dissipativity of the GBDF-A algorithm. The total energy of the linear
vibration, defined by E; = 1 w?u? + 1112, decays over time as a function, E; = Eqe?*/T, where E is the initial energy and the
constant y depends on 01, 0, and At/T, as is shown by the total energy histories in Fig. 2(a). We therefore employ the fraction

of energy loss per period, % =1 —e77, as a measure of the dissipativity of the algorithm. In Fig. 2(b) we plot contours of

the fraction of energy loss per period, 1 — e~7, for a fixed At/T = 0.05, over the region of unconditional stability in the 6; and
0, plane. It shows that as (0,1, 0,) moves away from the left-bottom boundary toward the top-right of the domain of uncon-
ditional stability, the algorithm becomes more dissipative. The parameter values on the line 0; + 0, = 1 are therefore among
the least dissipative of this class of schemes, and are preferred in terms of dissipativity. Note that for the GBDF-A scheme
with 0; + 6, = 1(—0.2 < 61,6, < 1.2) the velocity and the acceleration are discretized in a different but complementary fash-
ion (see Eqgs. (14) and (15)). In particular, with (01, 0;) = (1,0) the velocity is discretized with BDF2 while the acceleration is
discretized with BDF3; With (64, 0,) = (0, 1) the velocity is discretized with BDF3 while the acceleration is discretized with
BDF2. Note that BDF3 itself is not unconditionally stable. But when BDF3 and BDF2 are combined in the above fashion the
overall algorithm is unconditionally stable due to their interactions. The GBDF-A scheme with 61,0, = (1/2,1/2) corresponds
to the Park method [32].

The GBDF-A algorithm with parameters (61, 0;) residing in the domain of unconditional stability is also stable in the pres-
ence of physical damping. To demonstrate this point we consider the damped linear vibration equation

il + 2¢wil + w?*u = 0, (18)

where ¢ is the damping coefficient. Applying the GBDF-A scheme to this equation, we can similarly form the amplification
matrix. Fig. 3 shows typical spectral radii plots and the eigenvalue distributions in the complex plane for the damped vibra-
tion equation, which are computed with (64, 6,) = (1, 0). Fig. 3(a) is a plot of the spectral radii of the amplification matrix as a
function of the time step size for several damping coefficient values, ranging from no damping, to critical damping and over-
damping situations. It shows that the spectral radius is no larger than the unit value for any At/T. Examination of the eigen-
value distribution in the complex plane for different ¢ values further indicates that no eigenvalue is repeated with a unit
norm for any At/T > 0. This is demonstrated in Fig. 3(b) by the eigenvalue distribution as At/T — oo for a fixed damping
coefficient ¢ = 0.1. A comparison between Fig. 3(b) and 1(b) (no damping) indicates that the presence of physical damping
has moved the largest eigenvalues (4, and 4s) inward toward the origin, making the computation more stable. With a larger
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Fig. 3. GBDF-A algorithm (damped vibration equation): (a) spectral radii of the amplification matrix versus time step size At/T for various damping
coefficients ¢&, (b) eigenvalue distribution in complex plane as At/T — oo for a fixed ¢ = 0.1, (c) spectral radii versus ¢ for various At/T and (d) eigenvalue
distribution in complex plane as ¢ — o for a fixed At/T = 0.1. All results correspond to (0;,0,) = (1.0,0.0).

damping coefficient ¢, the distribution moves further toward the origin. It is evident that the amplification matrix has no
repeated eigenvalue with a unit norm for any At/T # 0. Fig. 3(c) shows the spectral radii as a function of the damping coef-
ficient ¢ for several fixed time step sizes At/T, and Fig. 3(d) shows the eigenvalue distribution in the complex plane as ¢ —
with a fixed At/T = 0.1. The arrows near each curve in Fig. 3(d) indicate how the eigenvalues evolve with the increase of ¢.
Most notably, the pair of complex eigenvalues with the largest norm (4; and 4s) evolve into two distinct real eigenvalues at
large ¢ values. While 4; moves toward the origin, 15 approaches the unit value as ¢ — oo. The amplification matrix has no
repeated eigenvalue with a unit norm for any ¢ > 0. The above observations also apply to other (6;, 6,)values in the shaded
region of Fig. 1(a). These results demonstrate the unconditional stability of the GBDF-A scheme in the presence of physical
damping.

We herein propose to employ the GBDF-A algorithm represented by Eqs. (14) and (15) to solve the semi-discretized non-
linear elastodynamic Eq. (8), with the requirement that the algorithmic parameters (6, 6,) should reside in the region of
unconditional stability. Eliminating U™+ from Egs. (14) and (15), and substituting the resulting expression for U™*! into
Eq. (8) will lead to a nonlinear algebraic equation about U™"', which can be solved with a Newton-type method. Subse-
quently U1 and U™ can be obtained by using Eqs. (14) and (15). The performance of the GBDF-A algorithm for nonlinear
dynamic problems will be demonstrated in Section 5 with numerical examples.
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3.1.2. General four-step scheme
Let us now consider the general four-step scheme of Eq. (9) for the semi-discretized elastodynamic equation. We re-para-
metrize the scheme with the following transform,

o =—1010,—10,+3 (19)
Oy = 010, + 6, — 4.
Accordingly, Eq. (9) is transformed to

A1(01,02)y™" + Az (01, 02)y" + A3 (01, 02)y" " + Aa(01,02)y" 2 + As(01,0,)y" > =y AL, (20)

where

The zero-stability condition is transformed to the following relation

01 +3)0, < 4

( 1 ﬁ) 2 (22)
(01 —3)02 < 5.
For temporal discretization of the semi-discretized elastodynamic equation we employ the above scheme as follows,
{ U"H _ A (0] 02) Un+1 Az((H-”z) Un A3(01,02) Un—l A4(()] .02) Un—z A5(01.02) Un—3

unt! = H1 O2) gn+1 + 91 02) Un 91 92)un 1 + 91 02) gn-2 + 91 02) (yn-3

(23)

The algorithm represented by the above equation will be referred to as the GBDF-B scheme in subsequent discussions.

We are interested in the values of (61, 6,) such that this algorithm (Eq. (23)) is linearly unconditionally stable. A spectral
analysis using the damping-free linear vibration Eq. (16) similar to the previous section results in the following iterative
relation:

[unﬂ u" un—l un—z un+1 u" un—l un—Z}T — G[U” un—l un—Z un—3 un un—l L'ln—Z un—3]T' (24)

The specific form of the amplification matrix G is provided in Appendix A.

Fig. 4(a) shows in the 0; — 0, plane contours of the maximum spectral radius p,,,,(61,62) = maxog%@pc(é}]ﬁz,w&),
where T is the period of vibration, T = 27/, and p¢ (01, 02, wAt) is the spectral radius of the amplification matrix. Within
the shaded region in Fig. 4(a) p,,,x has an identical unit value.

For (01, 0,) values from the shaded region, eigenvalue distribution indicates that the amplification matrix has no repeated
eigenvalue of a unit norm. This is shown in Fig. 4(b) by the distribution of the eight eigenvalues in the complex plane cor-
responding to (64,6,) = (1/2,4/5), which belongs to this region. The matrix has four complex conjugate pairs of eigenvalues.
Among them the pair of /; and /g originates from the point (1,0) in the complex plane (which corresponds to wAt = 0) and
has the largest norm as wAt is not large, while the other eigenvalues all originate from and are confined inside the unit circle.
One can observe that for any wAt > 0 the norms of all eigenvalues are no larger than one and that no eigenvalue is repeated
with a unit norm. This observation also applies to other (6, 6,) values from the shaded region of Fig. 4(a). Therefore, the
shaded region corresponds to the domain of unconditional stability of the GBDF-B algorithm. Note that this domain is
non-compact in the 0; — 6, plane, and it is contained within the domain of zero-stability (Eq. (22)). The left boundary of this
domain lies on the line 6; = I (with 4/5 < 6, < 2). A study of the damped vibration Eq. (18) shows that the GBDF-B algorithm
with (01, 0,) values located in this domain is also unconditionally stable in the presence of physical damping.

The dissipativity characteristics of the GBDF-B algorithm is demonstrated by Fig. 4(c), in which we plot contours of the
fraction of energy loss per period in the 0; — 0, plane, computed using a time step size At/T = 0.02. A comparison of Fig. 4(a)
and (c) indicates that within the domain of unconditional stability the GBDF-B scheme tends to be less dissipative with
(01, 62) values falling on the left boundary, 6; = 1/2.

Plots of the spectral radius pg as a function of At/T for several (6,, ;) values lying on the left boundary of the domain of
unconditional stability have been shown in Fig. 5(a). In Fig. 5(b) we compare the fraction of energy loss per period as a func-
tion of At/T for the same pairs of (01, 0,) values. It is evident that for fixed (6, 0;) values the dissipativity of the GBDF-B
scheme increases with increasing time step size At/T. Furthermore it indicates that, along the left boundary 6, = 1/2, the
dissipativity of the scheme decreases as 0, decreases for a fixed time step size. Therefore, the GBDF-B scheme with
(01,02) = (1/2,4/5) is the least dissipative member of this family of unconditionally stable algorithms.

The GBDF-B algorithm will be employed to solve the semi-discretized nonlinear elastodynamic equation, with the
requirement that the algorithmic parameters (0;,0,) be located within the domain of unconditional stability. The discreti-
zation leads to a system of nonlinear algebraic equations with U™ as the unknown, which is solved with a Newton-type
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Fig. 4. GBDF-B algorithm: (a) contours in 6; — 0, plane of the maximum spectral radius p,,,(01,0,) with the linear vibration equation, (b) eigenvalue
distribution in the complex plane for 0 < wAt < oo corresponding to (0,6-) = (1/2,4/5) and (c) contours of fraction of energy loss per period in 0; — 6,
plane computed with a fixed time step size At/T = 0.02. T is the period of vibration.

iterative method. Afterwards Eq. (23) can be used to compute U™+ and U™ In Section 5 we will present several nonlinear
numerical examples computed with this algorithm. Since the scheme requires historical information (step n — 3), some other
algorithm (e.g. trapezoidal rule) needs to be used to calculate the first steps to initiate the computation.

3.2. A composite method based on BDF-like schemes

We next present a composite time integration algorithm incorporating the BDF-like scheme of the previous section and
the trapezoidal rule using a strategy similar to [3]. We consider the time step from n to (n + 1) consists of two equal sub-
steps. In the first sub-step, from n to (n + 1/2) (i.e. from t to t + At/2), the trapezoidal rule is employed to solve the semi-dis-
cretized elastodynamic equation; In the second sub-step, from (n+1/2) to (n + 1) (or from t + At/2 to t + At), the BDF-like
algorithm of the previous section is employed for the computation.

More specifically, in the first sub-step we enforce the semi-discretized nonlinear elastodynamic Eq. (7) at time step

(n+1/2),
MU™% + N* — R™Z = 0. (25)
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Fig. 5. GBDF-B algorithm: spectral radius (a) and fraction of energy loss per period (b) as a function of At/T with different (6, 6,) parameters.

The trapezoidal rule is then used to discretize the above equation,

U™ = U 4 A0 4 U
{ 40 1 0 26)

Un+% _ Un + % (U" + Un+%)
After eliminating U™ from Eq. (26) and substituting U*Z into Eq. (25), one obtains a nonlinear algebraic equation about

U™, which can be solved with a Newton-type method.
For the second sub-step we employ a BDF-like scheme such as the GBDF-B scheme with a time step size At/2.

Un+1 — 0] 02 Un+1 0] 02 Un+2 + 01 02 Un Ayl 0] 02 Un—— As (()],Oz)Un—]

(27)

l"],pr] _ 0] {)2 Un+] + 01 02 Un+2 + ()1 02 Un A4A(;]/ 02 U"T + 0] 02 Un 1

Eliminating U™*! from Eq. (27) and substituting U*! into Eq. (8) result in a nonlinear algebraic equation about U™, which
can be solved with a Newton method. The above composite scheme will be referred to as the GBDF-TR algorithm hereafter.

The zero-stability requirement for the GBDF-TR composite scheme yields the following conditions on the parameters
((91 s 02):

3 19
@ J@<4,@>—2 (28)
or
3 19
(91 2) 0 >— 4 0, < -2. (29)

In order to determine the range of (6, 6,) values for the GBDF-TR scheme, we again employ the spectral analysis using Eq.
(16). Applying the GBDF-TR composite scheme to this equation leads to the following iterative relation:

[un+1 un+% un un+1 un+;— ut un+1}T — G[un un—% un—l ut un—}— l'ln—l ﬂn]T, (30)

where G is the amplification matrix and its specific form is provided in Appendix A.

Fig. 6(a) shows contours of the maximum spectral radius, pp,,(01,02) = MaXoa .. Pc(01, 02, WAL), in the 01 — 0, plane,
where p¢ (64, 02, wAt) is the spectral radius of the amplification matrix.

Within the shaded region (which excludes the boundary curve on the top side) p,,, has an identical unit value. A typical
distribution of eigenvalues of the amplification matrix in the complex plane for (64, 0,) parameters from the shaded region is
shown in Fig. 6(b), which corresponds to (61,6,) = (7/9,9/10). One can observe that the amplification matrix has no re-
peated eigenvalue with a unit norm for any wAt > 0. This observation also applies to other (01, 0;) values from the shaded
region. The GBDF-TR algorithm is therefore linearly unconditionally stable for (6, 0,) parameters located in the shaded re-
gion of Fig. 6(a). Note that the parameter values of (0;,0,) within this region also satisfy the zero-stability condition (Eq.
(28)). We have also studied the GBDF-TR algorithm for the damped vibration Eq. (18) and confirmed its unconditional sta-
bility in the presence of physical damping with (61, 6,) values located in the shaded region of Fig. 6(a).

Fig. 6(c) shows contours of the fraction of energy loss per period in the 0; — 0, plane, computed using a fixed time step
size At/T = 0.02. It indicates that, within the domain of unconditional stability, the GBDF-TR schemes with (6,, 6,) values
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At/T = 0.02) and (b) distribution of eigenvalues of amplification matrix for 0 < wAt < oo with (01,0,) = (7/9,9/10).

lying on the boundary curve on the left side are generally associated with low dissipativity. The spectral radii as a function of
At/T for several (61, 6,) values lying on this boundary curve have been shown in Fig. 7(a). Fig. 7(b) shows the fraction of en-
ergy loss as a function of At/T for the same set of (0;,0,) values. We observe that the GBDF-TR scheme becomes more dis-
sipative as the time step size At/T increases, similar to the BDF-like schemes, and that along the left boundary of the domain
of unconditional stability the scheme becomes more dissipative as 0, increases.

3.3. An extension of the Bathe composite strategy

In this section we present an algorithm that can be regarded as an extension of the Bathe composite strategy [3]. This
algorithm retains the self-starting nature and second-order temporal accuracy of the Bathe method, but improves upon
the dissipativity. We borrow the idea from [3] that a time step of size At is treated as two equal sub-steps of size At/2. In
the first sub-step, from n to (n + 1/2) Eq. (7) is enforced at n + 1/2 (Eq. (25)). The unknowns to solve are the displacement
U™, velocity U™, and acceleration U3,

To solve this sub-step we employ a variant form of the Newmark-(8, 7) scheme with y = 1/2, represented by the following
equations,
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2 2
0,U™% — 0,U" = 0, (%) U+ (%) 0 4 (02—2 - 1) <%> o, (31)
Un+% _U = % (Un+% + Un)7 (32)

where the algorithmic parameter 0, (60, # 0) plays the role of 1/8, and 0, = 4 corresponds to the trapezoidal rule. The above
formulas are second-order accurate for any non-zero value of 0,, as is well-known. Note that if this scheme alone is em-
ployed to solve the linear elastodynamic equation, the condition 0 < 0, < 4 is required for stability.

In the second sub-step, from (n + 1/2) to (n + 1), the semi-discretized Eq. (7) is enforced at time t + At (Eq. (8)). The un-
knowns to solve are the displacement U™, velocity U™, and acceleration U™*! at step (n+ 1). We employ the following
scheme to solve this sub-step,

2
(3 - %01>U”“ —6(1 - 0,)U"% ¢ (3 - gel>u" =2 (%) U3 4 (30, - 2) (%) U+ (%) o, (33)
%UHH -~ 2Un+% + %Un _ %UFH»]’ (34)

where 0; is an algorithmic parameter (0; # 2), and U™ and U™ are known from the first sub-step. It can be verified through
Taylor expansions that Eq. (33) represents a second-order accurate relation for any value of 0,. Note that the above scheme
with 0; = 1/2 is equivalent to, but has a different formulation than, the second-order backward Euler method applied to both
Un+1 and U"H.

The algorithm represented by Eqgs. (31)-(34) is a family of second-order composite schemes with 0; and
0,(01 # 2 and 0, # 0) as algorithmic parameters. We will subsequently refer to this algorithm as the SDMM-Newmark com-
posite scheme.

We next determine the range of the parameter values based on Eq. (16). Note that this composite scheme as a whole is
zero-stable (i.e. stable as At — 0) for any (6, 6;) value with 6; # 2 and 6, # 0, even though the individual algorithm of the
second sub-step represented by Eqs. (33) and (34) is only zero-stable under the condition 0 < 0; < 1.

Employing this scheme to discretize Eq. (16) and advance from time step n to (n + 1), one obtains the following iterative
relation:

[un+1 e unﬂ]T — G[u” un un}T_ (35)

The form of the amplification matrix G is provided in Appendix A.

Fig. 8(a) shows contours in the 6; — 6, plane of the maximum spectral radius, p,,(61,02) = MaXocwat<coPg (01, 02, WAL).
The shaded region in the plot marks the domain in which p,, has an identical unit value. On the right and the bottom sides
this domain is bounded by the lines 0; = 2 and 0, = 0 (excluding these lines), respectively; The tip of the domain on the left
side corresponds to the point (64, 6,) = (0, 3).

With (0,4, 0,) parameters located in the shaded region, the amplification matrix has no repeated eigenvalue with a unit
norm for all wAt > 0. This is illustrated in Fig. 8(b) with the eigenvalue distribution (for 0 < wAt < oo) in the complex plane
corresponding to (01, 0;) = (7/10,16/3). One can observe a pair of complex conjugate eigenvalues (1, and /,) which becomes
distinct real eigenvalues for a range of moderate wAt values, and a third eigenvalue (43) which is identically zero. For all
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1

wAt > 0 no eigenvalue of the amplification matrix is repeated with a unit norm. This observation also applies to other (01, 07)
values from the shaded region. Therefore, the shaded region of Fig. 8(a) corresponds to the domain of unconditional stability
of the SDMM-Newmark algorithm.

In the presence of physical damping the SDMM-Newmark algorithm with (01, 6,) from this domain is also unconditionally
stable.

Fig. 8(c) shows contours in the 0, — 0, plane of the energy loss fraction for a fixed time step size At/T = 0.02. The distri-
bution shows that in the region 6; < 3/2 the dissipativity increases as 6, decreases for a fixed 6, value, and that in the region
0, > 1 the dissipativity increases as 0; increases for a fixed 0, value. Comparison between Fig. 8(a) and (c) indicates that
within the domain of unconditional stability the (6;,60,) values lying on the boundary curve on the left-top side
(0 <0, £0.742,3 < 0, < 5.9) are associated with the lowest dissipativity within this family of algorithms; The (0,, 0,) values
lying on the bottom-right boundary curve of this domain (1.5 < 6; <2, 0 < 0; < 1) are also associated with relatively low
dissipativity, but they are more dissipative than those on the left-top boundary curve.

Fig. 9(a) shows the spectral radii as a function of time step size At/T for several (64, 6,) values lying on the left-top bound-
ary curve of the domain of unconditional stability. The “hunch” on the curves around At/T ~ 0.83 corresponds to the
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Fig. 10. Neo-Hookean cubic block in nonlinear vibration, discretized with 5 tetrahedral elements.

With these conditions, the problem has the following analytic solution for the displacements with respect to the coordi-
nates of the initial configuration:

ux = [A— 1+ Bsin(at)]X + Csin(bX)
uy =0 (39)
u; =0.

It is straightforward to verify that the solution described by Eq. (39), together with the body force in Eq. (37) and the traction
force in Eq. (36), satisfies the nonlinear elastodynamic Eq. (1) for a compressible Neo-Hookean material described by Eq. (4).

To simulate the nonlinear vibration of the object numerically, we discretize the cubic domain with five tetrahedral ele-
ments (see Fig. 10). We employ a high-order spectral element method [15] for spatial discretizations of the nonlinear
momentum Eq. (1). For temporal discretization we employ the time integration schemes presented in the previous section.
Dirichlet boundary condition with zero displacement is imposed on the face X = 0, and traction boundary conditions based
on Eq. (36) are imposed on the other faces. The initial conditions for the displacement and velocity are set according to Eq.
(38).

To investigate the temporal convergence of these algorithms, we use a fixed element order (i.e. order of highest expansion
polynomial in shape functions) and vary the time step size At systematically. For each time step size we integrate the
momentum equation over time from t=0 to t = t, and then compute the L*,I? and H' errors of the displacement fields
at t = t; against the analytic solution (Eq. (39)).

The temporal convergence characteristics of the proposed algorithms are shown in Fig. 11, in which we plot the L, L? and
H' errors of the three displacement fields as a function of the time step size. Fig. 11(a) shows various errors versus At com-
puted with the GBDF-B scheme 6; = 1/2, 6, = 4/5. Fig. 11(b) shows the H' error of the x-displacement field versus At com-
puted with various time integration methods, including the trapezoidal rule, GBDF-A (0; = 1,0, = 0), GBDF-B (0, = 1/2,0, =
4/5), GBDF-TR scheme (6; = 7/9, 6, = 9/10), and SDMM-Newmark composite scheme (6; = 7/10, 6, = 16/3). The results are
obtained employing a fixed element order 4 for all five elements, and the problem is with the following parameter values:

A=20, pu=10, p,=10, A=12, B=02, C=01, a=10, b=0.01, =02

Note that we have omitted the physical units for all the parameters in this problem as well as in all the numerical exam-
ples in subsequent sections. Throughout the paper we will assume that a consistent system of physical units have been em-
ployed for the variables and parameters in all the test problems.

It is evident that as the time step size is reduced by half the numerical errors are reduced by a factor of four. These results
demonstrate the temporal second-order accuracy of the proposed algorithms in Section 3.

5. Representative numerical examples

To evaluate the performance of the proposed time integration algorithms, we consider several three-dimensional numer-
ical example problems of nonlinear elastodynamics. We solve these problems with the proposed algorithms in Section 3, and
compare the results with those from the trapezoidal rule, the Bathe method [3], and the Park method [32]. The test problems
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(01,02) = (1,0); GBDF-B: (0,0-) = (1/2,4/5); GBDF-TR: (04, 0-) = (7/9,9/10); SDMM-Newmark: (0,0,) = (7/10,16/3).

involve large deformations, large displacements and rotations, which demonstrate the difficulties encountered by some algo-
rithms. The material models considered are assumed to be of St. Venant-Kirchhoff or compressible Neo-Hookean types,
respectively described by Eqgs. (2) and (4). As noted in Section 4, the units of physical variables and parameters are omitted
with the assumption that a consistent system of units are used for each problem.

The tests involve the free flight of a 3D L-shaped block. This problem has been considered previously by other researchers
(see e.g. [36]). Fig. 12 shows the initial undeformed configuration of the block, and provides all values of the geometric
dimensions. The origin of the coordinate system is located at the corner vertex that is blocked from view in the figure,
and the three axises are along the edges of the block. Two time-dependent traction forces are applied on the two end faces
of the block, as marked in Fig. 12. These forces are specified by the following functional forms:

t, 0<t<25,
Fi(t) = —F,(t) = (150,300,450)p(t), p(t)=<{ 5-t, 25<t<5, (40)
0, t>5

There is no body force acting on the object. The density of the block in the undeformed configuration is chosen to be
Po = 1000. The block is at rest in its undeformed configuration at t = 0.

Both St. Venant-Kirchhoff and compressible Neo-Hookean material models are considered for the L-shaped block. With
the St. Venant-Kirchhoff model we further consider two cases: a rigid block and a deformable block, implemented, respec-
tively by employing fairly large and small Young’s modulus values. Corresponding to these cases, significant or virtually no
deformations are involved during the free motion of the block.

Because the net external force acting on the block is zero, the object will simply tumble in space with no net displacement
of its center of mass. In order to simulate its motion, we discretize the domain occupied by the block with four hexahedral
elements as shown in Fig. 12, in which solid lines mark the edges of the elements. High-order spectral element expansions
are employed for spatial discretizations, as outlined in Section 2 and detailed in [15]. An element order of 3 has been em-
ployed for all elements in the spatial discretization. Traction boundary conditions according to Eq. (40) are imposed on
the end faces of the block where the external forces are applied, while traction-free boundary conditions are employed
on the other faces. The time integration algorithms presented in Section 3 are employed for temporal discretization. The ini-
tial displacements and initial velocities are set to be zero.

5.1. Rigid L-shaped block

We first investigate the case of a rigid block, implemented with a Young’s modulus value E = 5 x 10, of a St. Venant-Kir-
chhoff material. The Poissonratiois v = 0.3. We have conducted long-time simulations of the object motion (over t = 1000) with
the proposed algorithms. Let us first investigate the characteristics of the total energy (Eq. (5)). Fig. 13 shows time histories of
the total energy of the tumbling block. The four plots correspond to four different time step sizes, ranging from At = 0.25 to
At = 2.0. The results in each plot are obtained with the GBDF-A (6;,6,) = (1,0), GBDF-B (6,,6,) = (1/2,4/5